

REDOX REACTION			REDOX REACTION		
$2Cu(s) \rightarrow 2Cu^{2+}(s) + 4e^{-} \text{oxidation}$ $O_2(g) + 4e^{-} \rightarrow 2O^{2-}(s) \text{reduction}$ $2Cu(s) + O_2(g) \rightarrow 2CuO(s)$			In light-sensitive sunglasses, UV light initic reaction.	ates an oxidation–reduction	
Core Chemistry Skill Identifying Oxidized an Substances	d Keduced		2Ag ⁺ + 2Cl ⁻ →	$2Ag + Cl_2$	
Identify each of the following as oxide reduction:	ation or		A. Which reactant is oxidized?	chloride ion, Cl ⁻ 2Cl ⁻ \rightarrow Cl ₂ + 2e ⁻	
A. Sn(s) \rightarrow Sn ⁴⁺ (aq) + 4e ⁻	Oxidation		B. Which reactant is reduced?	silver ion, Ag^+	
B. $Fe^{3+}(aq) + 1e^- \rightarrow Fe^{2+}(aq)$	Reduction			2Ag + 2e 7 2Ag	
C. Cl₂(g) + 2e [−] → 2Cl [−] (αq)	Reduction	7			8

PERIODIC TABLE : A SIMPLE SUMMARY

Strong reducing elements are grouped to the left, while the strong oxidizing elements are grouped to the right. Elements within each individual group (generally) have the same number of valence electrons, or number of electrons in their outer valence shell (but, transition metals are a little strange).

BATTERY MATERIAL :STANDARD POTENTIAL TABLE

	Cathode	(reduction) half-reaction	Standard potential	E^0 (volts)
indicating that it would r	ather	$\mathrm{Li}^+ + e^- \Rightarrow \mathrm{Li}_{(\mathrm{s})}$	-3.01	
hence is the strongest		$\mathbf{K}^+ + e^- \Rightarrow \mathbf{K}_{(s)}$	-2.92	-
reducing agent of those	C	$a^{2+} + 2e^- \Rightarrow Ca_{(s)}$	-2.84	
listed).	N	$\mathrm{Na^+} + e^- \Rightarrow \mathrm{Na_{(s)}}$	-2.71	
	Zi	$n^{2+} + 2e^- \Rightarrow Zn_{(s)}$	-0.76	
	2]	$\mathrm{H^{+}} + 2e^{-} \Rightarrow \mathrm{H}_{2(\mathrm{g})}$	0.00	
	C	$u^{2+} + 2e^- \Rightarrow Cu_{(s)}$	0.34	
	$O_{3(g)} + 2H$	$\mathrm{H}^+ + 2e^- \Rightarrow \mathrm{O}_{2(g)} + \mathrm{H}_2\mathrm{O}_{(l)}$	2.07	
	F	$C_{2(g)} + 2e^- \Rightarrow 2F^-$	2.87	it reduces most easily, and
				therefore is the best oxidizing agent of those listed
				16

Example : Calculate the theoretical capacity of an electrochemical cell comprising Zn and Cl2.

 $Zn + Cl_2 \rightarrow ZnCl_2$ $mw_{Zn} = 65.4 \text{ g}$; n = 2; g - equiv = 32.7 g $26.8 \div 32.7 = 0.82 \text{ Ah/g}$ If we repeat same for Cl : 0.76 Ah/g 1.22 g/Ah + 1.32 g/Ah = 2.54 g/Ah or 0.394 Ah/gSpecific Energy (Wh/g) = 2.12 V × 0.394 Ah/g = 0.835 Wh/g or 835 Wh/kg

19

UPCH ANSILUE and Washingth Industria			
ACTICAL	ENERGY OF	A BATTERY	
	Theoretical specific	Practical specific	Percentages from
System	energy (Wh kg ⁻¹)	energy (Wh kg ⁻¹)	theoretical (%)
Lead acid, LAB	167	33	20
Nickel–cadmium, NiCd	240	45	19
Nickel–metal hydride, NiMH	300	79	26
Nickel zinc, NiZn	320	80	25
Zinc bromium, ZnBr	435	90	21
Lihium ion, Li-ion	450	120	27
Sodium culfur	795	90	11

Astronomy for the second termination

DISCHARGE CURRENT EFFECT ON VOLTAGE

It is obvious that the higher the discharge current, the lower is the voltage.

CYCLIC LIFE

cyclic life:

VEEresearch Institute

It determines how many times a battery will be able to deliver charge–discharge cycles without its capacity dropping below a certain level, typically 80% of the original capacity.

The problem with battery cycle life is that it can only be estimated based on general empirical information and not absolutely determined.

Battery	Calendar	Cycle life
Lead-acid, SLI	3-6 months	200-700
Sealed NiCd (FNC)	5-20 months	500-10,000
Nickel metal hydride	2-5 months	300-600
Nickel iron	8-25 months	2000-4000
Zinc-silver oxide	2 months	50-100
Lithium cobalt oxide	1	300-1000

33

