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Chapter 4 Numerical Stability
+ Aconcept only defined in iterative problems.
ini H It necessitates:
| Fln Ite Dlﬂere nce MethOd for | Errors, of any type, should not grow in an iterative process.
Parab0| IC Equatlons + Somewhat more difficult than the study of consistency!
« For non-linear problems, the necessary condition for stability is that linear stability
analysis of them must be stable.
Last Session Contents: «  We will discuss it in detailed later on!
1) Numerical Stability « Now, let's only take a brief look at “stability of Dufort- Frankel and Explicit scheme”
2) Convergence
3) Tridiagonal Matrix Algorithm
4) Implicit Methods
5) Boundary Treatment for Derivative BCs
6) Keller-Box Method
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Numerical Stability-In Practice Numerical Stability-Physical Interpretation
1. Recall the discretized equation of heat conduction using Dufort-Frankel: Sometimes numerical instability can be seen as physically unacceptable results!
! - ! W, = @+ i) st ) Let's consider explicit scheme for discretization of heat equation:
2 Ay 2 !
W =l )+ (=20
« This scheme is unconditionally stable. A
Ar
r=
2. Explicit Method is stable if: (Ax)?
el ;\’ 1< % It limits time step size! Assume that at t = n we have: ul' = 0 and ul},, = ul'; = 100°C
(Ax)- 2
i o In this case, if r >% temperature at point i 2
3. Central Difference in time: will exceed the temperature of two nearby points! M T T T nel
el _ gl
o il W =2+ i) UNACCEPTABLE!? e ve e
2a1 7 i ¢ "
. . . The maximum expected temperature must be 100°C i1 i il
« This scheme is Unconditionally Unstable. However, when r = 1 it becomes Tlnﬂ — 200°C ! N
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Convergence Tridiagonal Systems of Equations
+ Generally speaking: Using numerical methods, the governing PDEs convert to system of algebraic
A Consistent and Stable Scheme will converge! i equations as follow:
« Convergence: Tx=b
Solving discretized equation of a PDE subjected to similar boundary and initial = . . . .
conditions will converge to the exact solution of that PDE provided that grid size Large tridiagonal systems arise naturally in a number of problems, especially in
is chosen to be infinitely small. the numerical solution of differential equations by implicit methods.
« Finite Difference Equation is converging if: ay ap 0 0 0 0 0 0
lim | U =u |=0 (x.1,) €2 ay ay apn 00 0 0 0
i
P 0 ay ay ay 0 .- 0 0 0
where ! = u(x,.1,) T=| 0 0 a5 ay as 0 0 0
. Lavs Bquivalence Theorem: | P
For a linear well-posed problem, with correct boundary condition, and a Finite 0 0 0 0 0 Ay_1n-2 Op-1n—-1 Gn—ipn
Difference Approximation of it, Consistency and Stability are necessary and 0 0 0 0 0 .. 0 L a,
sufficient conditions to provide the convergence! . R . R L
When a large system of linear algebraic equations has a special pattern, it is
usually worthwhile to develop special methods for that unique pattern.
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Tridiagonal Systems of Equations

One algorithm that deserves special attention is the algorithm for tridiagonal
matrices, often referred to as the Thomas (1949) algorithm.

ay a, 0 0 0 ... 0 0 0
ay ayp an 0 0 0 0 0
0 ay ay ay O 0 0 0
T=| 0 0 a4 ay as ] 0 0
0 0 0 0 0 - @ yu2 iyt Guin
6o o o0 0 0 .- 0 [ — a,,
Row 2: R, — (axn/a1)Ry [0 ay—(ay/apa, a3 0 0 -~ 0 0

only as, in column 2 must be eliminated from row 3

only a,3 in column 3 must be eliminated from row 4, etc.

The eliminated element itself does not need to be calculated.

storing the elimination multipliers, em = (a,,/a,,) etc, in place of the eliminated

ay ap 0 0 0 0
Gy ap ay 0 0 0
0 ay ay 0 0 0
i T=|0 0 agm 0 0 0
0o 0 0 0 0 Apin—2  Opoin-1 Gnoip
o 0o o 0 0 0 [ - a,,

Hint:
Only the diagonal element in each row is affected by the elimination.
Elimination in rows 2 to n is accomplished as follows:

Ay = @ = (@i /Giy,iz1)8i1 (i=2,....n)

Thus, the elimination step involves only 2n multiplicative operations to place T
in upper triangular form.
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Tridiagonal Systems of Equations

Subsequent elements of the b vector are changed in a similar manner.

by = by — (an /an)by

T = o?T = —o’T,

Ty =21+ T
A

" T(0.0)=00

L1 0(A?) — 2T, = —o°T,

7(1.0) = 100.0

a

em = (021 /an) is already calculated. Thus, the total process of elimination, ®=4.0
including the operation on the b vector, requires only 3n multiplicative operations. T, ~2+ o? AxZ)T, + Ty = —02 Ax? T, Ax=0.125
Hint: (240 A% =225
The nxn tridiagonal matrix T can be stored as an nx3 matrix A" since
there is no need to sto,re the ze:os. 225 10 0.0
— a2 a3 1.0 -225 1.0 0.0
“’2,1 a’m a’2)3 Column1=Sub-diagonal elements of T 10 =225 1.0 0.0
A ay “3,2 al3,3 Column2=Diagonal elements of T A=|10 -225 1.0 and b= 0.0
..................... _ . 1.0 225 1.0 0.0
Gy iy diys Column3=Super-diagonal elements of T 10 —225 1.0 0.0
n—1, n—1, n—1, —
ay a, — 1.0 —225 — 100.0
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Example Implicit Finite Difference Approximations
— —2.250000 1.0 0.0 Backward Difference Scheme
(—0.444444) —1.805556 1.0 0.0 | +—
(~0.553846) —1.696154 1.0 0.0 - g L L ls le
A’ = | (-0.589569) —1.660431 1.0 and b = 0.0 & ad - holanary T [ 1
(—0.602253) —1.647747 1.0 0.0 a ! st S
(—0.606889) —1.643111 1.0 0.0 Considering r = %we have: Known
(—0.608602) —1.641398 — —100.0 =TT

x; = by/dh, = (—100)/(—1.641398) = 60.923667
x5 = (b — d 3x7) /a2 = [0 — (1.0)(60.923667))/(~1.643111)
=37.078251
1.966751
4.425190
7.989926
13.552144
22.502398
37.078251
60.923667

Wl = ) -2 )

or,

Grid Stencil

BTCS:

rl”l a0+ 2rnd !

P
A -rl =4

How to solve it?!
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Implicit Finite Difference Approximations

a0+ 200 =) =

BTCS:

+ Assume that boundary values are

(1+2) -r
zero at both ends. i
-r (142 —r u
+ This tri-diagonal system can be
solved by Thomas Algorithm.
Note that; e o
+ BTCS is unconditionally stable. = (20]{ul,

Second order in space but first order in time!

u

Implicit Finite Difference Approximations
+ Crank-Nikolson Scheme
I'j met_ a4 St
& Wy = E(AJF( G+ 6u) =)
g —_—
i A |
& XA S known
) =2 e ol =20 )
]
Considering r = % we have: Grid Stencil
&
W= = S = 2 )+ 00 - 20 )
or,
! =200+ ™ vl = =rd’ |+ 2(=1 4+ ral = ril., Crank-Nikolson

Implicit Finite Difference Approximations

B %

+ Keller-Box Scheme
du Fu
& ad

We can re-write this equation as:

du
dx
du
ar

Grid Stencil

Implicit Finite Difference Approximations

+ Keller-Box Scheme
du Fu

[/

We can re-write this equation as:

du P

T o . "
t# _ '_ w =, P Grid Stencil
ar - ax ,

or,

P
W=, =P+ PL)=0




Computational Fluid Dynamics - Prof. V. Esfahanian

Implicit Finite Difference Approximations Implicit Finite Difference Approximations
« Keller-Box Scheme hy
. W =il =P+ PL)=0
du  dru i » { 2
A i r
o dx ‘ @ \ P =P =+l ) =R
We can re-write this equation as: .
) 1ol foo |""‘ I"‘
N 5
')_ =1 =& 1 =4 Py 0
it oW ! . 5 " Ry
UL Grid Stencil - =1 | i ‘ I“ 0 |
h, &, A Py 0
00 -1 == -5
Wk =F W) | " ] R:
i ;
b1 — T P 0
or,
’ h h,
PP, - Aie.f,‘ ru) =P P %"':r Vel
i R )
1
17 18
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Implicit Finite Difference Approximations Implicit Finite Difference Approximations

*  We can re-write the previous matrix as below where the elements are blocks itself. + The main features of Keller Box Scheme
+ This matrix can be solved using block Thomas algorithm. 1. Only slightly more arithmetic to solve than the Crank-Nikolson method
i 2. Second order accurate with arbitrary (uniform) x and y spacing
» Please note that this matrix should be constructed so that: det(B,) # 0 3. Allows very rapid x variation
4. Allows easy programming of the solution of large numbers of coupled equation.

By Cy i | | &
A B € i R,
- + Steps:
Ay B & i ]
1. Reduce the Equations to a 15! — order system
- 2. Write difference equations using central differencing.
3. Linearize the resulting algebraic equation and write them in matrix-vector form
4. Solve the linear system by the block-tridiagonal elimination method
A, B, i, R,

20
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Implementation of Boundary Condition Implementation of Boundary Condition
+ Implicit schemes mostly end up to this form: * 1%t Method:
Boundary conditions are considered in the equations and matrix-form equation is
A} + B+ Calt) = R = Ry vt ) solved for i = 2 to i = imax — 1.
) = Ug, Uimax = Up ”__“!q +Cult! R - .Al;u:"
« 15t Method: Aas=1 e 2+ Binax Wi = R i = Comi !
Boundary conditions are considered in the equations and matrix-form equation is
solved fori =2 to i = imax — 1. 5 Nl N
B: '8 R = A
. Ay By Gy ! R
A} + Bady™ + Caudy”' = RS i=2 v
Boty"' + oy = Ry - A" Considering BC at a
Almax 1“1,:,:.:‘ s+ Bimax |";:..,,,[,,| + Cimax »If:'.,:‘,l\ = R:‘,,.m,l i = imax
Ammii-1imge-z + Binar-1Wimast = Riaicy = Coman-115”" Considering BC at imax Az Bz Gz || g R
Ao B ||t | R, - €
21 22

B %

Implementation of Boundary Condition

+ 2" Method:
Let the computer do the calculations!

B G uy! !
Ay Br'Cy Tl R

Ar-y Broy Cra || 3

'
-1 -1
it Ry

A B ||w i

Bi=B=1 C=A=0

Note: a slight increase in computation cost, however, gives more flexibility in
computer code!

23

Derivative Boundary Condition

1%t Method:

Backward difference at the boundary
ou
ox

Buy —4uy_; +uy_p

0
2Ax

u(x,0) = f(x)

23t Method:
False boundary

LT Rl
ax =N 2Ax

0

24
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Numerical Solution of Blasius Equation Numerical Solution of Blasius Equation
+ Blasius Equation: « We discretize the equations in L
2
@ . fi=Ff 1
i) + Sjlm,’"lr‘l =0 n=y @ an arbitrary parameter 5 S = 3l )
F(0) = £7(0) =0, foo) =1 L . BRI
hy 2
V=V @ fivy + fiav;
T = m5UMa = —a T
« Breaking it up to three first order equations: ‘ o
df _ W F0)=0 U ou + Newton Linearization
dn 9y N These equations are non-linear, so, we have to linearize them.
du Venishing .~
I"i =v u(0) =0 uleo) =1 S"Ej"" R — S = o)
dv T ! = ull + ol
dy 2 —— — vt =y oy
where n denotes the iteration number.
Note: we call the solution converged if §(.) variables approach to zero!
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Numerical Solution of Blasius Equation

- %

. ituting these par into the first equations yields:
? it
£ 480 =1y =6 =5 ) + 66 + i}, + 6y, |
i) W) = o V6V 46 ]
IRt & a W7+ 800V + 6%
Vied = = == =2l e SN+ V) 4
[ [ 3 ) L)

U7+ of7 0, +6v)

We can rewrite it as:

h .- P
Sf7 =of7, - i 00 ) = 7, == a+had
o ol s P i b
8} =B, = =MV + V) = ¢ :
2
ah B ah,
(1 =200 4 (=14 =217 e ’
ah wwh i o ahy
e+ VT' b= § =V =V = UV,
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Numerical Solution of Blasius Equation

« Finally, it can be written in matrix form as:

A B A O, = R =167 o sl
B C; & R
AL B CE & R
P /I oM | E/ I /A
K B | S || B

Note: This block-tridiagonal matrix can be solved using block Thomas elimination

28




‘ Numerical Solution of Blasius Equation

* A,B,C and R blocks are as following:

‘ A ' b 0
b s: h ah, : ah
L —_ —_
v ! 0 -1 T o 1+ Ty
h
0 0 ] Sl
« ‘ 1 j ! K v |
[ [
B dary also gives:
I
1 0o 0 1 '_ 0
- rh & h
E=|0 1 0 " 1 0 be T
hy 4 4
L 0 i 0
0 s
Bi=lo B = |
o 0
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