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Chapter 4

An Introduction to

Numerical Methods for 
Parabolic Equations

First Session Contents:

1) Introduction
2) Finite Difference Methods
3) Explicit methods for Parabolic Equations
4) Truncation Error (T.E.)
5) Consistency
6) Stability
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Parabolic PDE

In this chapter, we will discuss about the 
numerical solution of one-dimensional 

parabolic PDE as given below:

B.C.’s

I.C.
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Computational Domain for Parabolic PDEs
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Computational Domain for Parabolic PDEs

�
�

Grid Points   or Mesh Points

Grid Spacing

Time Step



2

Computational Fluid Dynamics - Prof. V. Esfahanian

5

Discretization

Transient Term (Forward Difference)

Diffusion Term (Central Difference)

General PDE

Substituting transient and diffusion terms in the PDE, we have 

where

where is the central difference operator
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Explicit Methods for Parabolic PDEs

1-D transient Heat Conduction Problem

Using the following Eq., the temperature at time step n+1 can be obtained 
from the temperature at time step n.

At time step n=1, temperature is known as initial condition.
Therefore,

Temperature at n+1, n+2, …  can be obtained.
[un+1]=[A][un]

A method which calculates the state of a system at a later time from the state 
of the system at the current time is called

Explicit Method
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Explicit Method (FTCS)

Solution is known 
at this level

Transient Term (Forward Difference)

Diffusion Term (Central Difference) FTCS
Forward Time Central Space
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Example (FTCS)

Initial
Condition

Boundary
Conditions
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Example (FTCS)
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Exact Solution

Numerical Solution

Example (FTCS)
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Example (FTCS)

Time
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Example (FTCS)

Time

Symmetry
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Example (FTCS)

Time
Numerical 
Solution

Exact
Solution

Absolute 
Error

Relative
Error

%

Time
Numerical 
Solution

Exact
Solution

Absolute 
Error

Relative
Error

%
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Example (FTCS)
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Solution
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Example (FTCS)

1

1 1-1
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tt

Example (FTCS)
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tt

Example (FTCS)

The value of r plays 

an important role in 
explicit methods
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Example (FTCS)
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Example (FTCS)
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Propagation Speed of  a Disturbance

Consider a 1-D parabolic PDE with all initial 
conditions are zero except at point A

A
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A

The propagation speed 
of a disturbance in 
parabolic PDEs for 

given time is
infinity 

The propagation speed of a 
disturbance in finite-difference 
form of the Parabolic PDE for 

given time is

∆�	/	∆�

Slope of 
Characteristics lines:

��

��
	= 	

∆�

∆�
		≠ 	0

Propagation Speed of  a Disturbance
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A

Slope of 
Characteristics lines:

��

��
	= 	

∆�

∆�
		≠ 	0

∆�

∆�
=

∆�

� ∆� �
=

�

�∆�
∆� → �
� = �����.

��

��
→ �Solution: 

Propagation Speed of  a Disturbance

The propagation speed 
of a disturbance in 
parabolic PDEs for 

given time is
infinity 

The propagation speed of a 
disturbance in finite-difference 
form of the Parabolic PDE for 

given time is

∆�	/	∆�
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Truncation Error (T.E.)

General PDE

Discretized PDE

≈
If h and k are small enough then T.E. 

approaches to zero and the discretized 
form is a good approximation of 

general PDE

Truncation Error is Defined as as ℎ, � → 0
independently
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Truncation Error (T.E.)

T.E. is obtained by 
writing the Taylor 

series of each term 

around point (xi ,tn) 
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Truncation Error (T.E.)

T.E. is obtained by 
writing the Taylor 

series of each term 

around point (xi ,tn) 

 Is the finite difference form of PDE acceptable?

 Does the marching method give a good approximation of PDE?

The finite-difference form of PDE should satisfy
both Stability and Consistency conditions
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Consistency

Finite-difference form of a PDE is consistent if:

In some finite-difference methods the T.E. is  
�(∆�)

�(∆�)

These methods are consistent if    
∆�

∆�
→ 0

DuFort-Frankel
method

The DuFort-Frankel method is consistent if        lim
∆�,∆�→�

∆�

∆�
= 0

T.E.
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Stability

 Concept of stability occurs in marching problems 

 A numerical method is stable
If the errors of any kind (Round of error and Truncation error) 
will not grow (increasing unconditionally) during time marching. 

 Generally, analysis of Consistency in a numerical method is more 
easier than analysis of Stability

 An explicit method is stable if

28

Example

Forward Time Central Space

u n+1=100-0+100=200
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Convergence for Marching Problems

Generally, a numerical method converges
if it is both stable and consistence

A numerical method converges if its global discretization error 

approaches zero as the mesh is refined

Given a well-posed initial value problem and a finite-difference
approximation to it that satisfies the consistency condition,
stability is the necessary and sufficient condition for convergence

Lax’s Equivalence Theorem


